

MotiveWaveϰ
Software Development Kit (SDK)

Programming Guide
Version: 1.3

©2019 aƻǘƛǾŜ²ŀǾŜϰ {ƻŦǘǿŀǊŜ

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 1 of 85

Preface

This document explains how to use the MotiveWaveϰ Software Development Kit (SDK) to implement
custom studies and strategies. The primary audience of this material is individual traders, or consultants
(both with a programming background, aka developers) looking to implement (and possibly distribute)
custom studies and/or strategies.

The ŘŜǾŜƭƻǇƳŜƴǘ ƪƛǘ ƛǎ ōŀǎŜŘ ƻƴ ǘƘŜ WŀǾŀϰ ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜΦ While advanced knowledge of this
language is not required, it is recommended that the person implementing the study or strategy have a
basic background in the language before reading this document.

Developers are free to use any development environment, including the command line tools in the
Javaϰ Development Kit. Examples provided will be with the Eclipse IDE (Integrated Development
Environment) available from: http://www.eclipse.org.

This document is intended to be a guide on how to use the SDK and is not a complete programming
reference. API (Application Programming Interface) documentation is available (generated using
hǊŀŎƭŜΩǎ WŀǾŀŘƻŎ ǘƻƻƭύ ǘƘŀǘ ŜȄǇƭŀƛƴǎ ŀƭƭ ƻŦ ǘƘŜ ŎƭŀǎǎŜǎΣ ƛƴǘŜǊŦŀŎŜǎ ŀƴŘ ŜƴǳƳŜǊŀǘƛƻƴǎ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ {5YΦ

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 2 of 85

Change History
Several enhancements have been added in version 1.1 of the SDK (these are compatible with version 2.2
and higher ƻŦ aƻǘƛǾŜ²ŀǾŜϰύ. These enhancements include the following:

1. Path Color ς The color of a path can be changed dynamically ό5ŀǘŀ{ŜǊƛŜǎΥΥǎŜǘtŀǘƘ/ƻƭƻǊόΧύ ǎŜŜ
API documentation).

2. Multiple Instruments ς Studies/Strategies may incorporate data for one or more instruments.
Trades may also be placed on more than one instrument.

3. Composite Studies ς A study may be composed of multiple study plots and overlays.
4. Access Control ς Distribution and usage of your studies/strategies can be controlled and

managed using a web interface.
5. Trading Sessions ς These may be used to constrain the trading hours for a strategy (intraday data

only).
6. Help Link ς This new attribute on the StudyHeader allows you provide a link to a webpage with

more information on the study/strategy.

The following changes have been added in version 1.2 of the SDK (these are compatible with version 5.0
ŀƴŘ ƘƛƎƘŜǊ ƻŦ aƻǘƛǾŜ²ŀǾŜϰύΦ ¢ƘŜǎŜ ŜƴƘŀƴŎŜƳŜƴǘǎ ƛƴŎƭǳde the following:

1. Tick Data ς Support for live and historical data. See section on Tick data.

The following changes have been added in version 1.3 of the SDK (these are compatible with version 5.3
ŀƴŘ ƘƛƎƘŜǊ ƻŦ aƻǘƛǾŜ²ŀǾŜϰύΦ ¢ƘŜǎŜ ŜƴƘŀƴŎŜƳŜƴǘǎ ƛƴŎƭǳŘŜ ǘƘe following:

1. Resize Points ς Support mouse interaction using resize points.
2. Context Menu ς Support for custom items added to the context menu (right click on study)

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 3 of 85

Table of Contents
Preface 1

Change History 2

1 Introduction 5

1.1 What is a Study? 5

1.1.1 Overlays 5

1.1.2 Study Plots 6

1.2 What is a Strategy? 7

1.3 Distribution 8

1.3.1 Access Control 8

2 Fundamental Classes 9

2.1 Packages 9

2.2 Study Class 9

2.3 StudyHeader 11

2.4 Describing User Settings 11

2.4.1 SettingsDescriptor class 13

2.4.2 SettingTab Class 14

2.4.3 SettingGroup Class 15

2.5 Settings class 16

2.6 Runtime Settings 18

2.6.1 Composite Studies 19

2.7 DataContext Interface 20

2.8 DataSeries Interface 21

2.9 Multiple Instruments 23

2.9.1 Design Time 24

2.9.2 Run Time 26

2.10 Custom Context Menu 26

2.11 Miscellaneous Classes 28

3 hǾŜǊƭŀȅ 9ȄŀƳǇƭŜΥ Ψaȅ aƻǾƛƴƎ !ǾŜǊŀƎŜΩ 30

3.1 StudyHeader Annotation (@StudyHeader) 31

3.2 initialize method 32

3.2.1 Design Time Information 34

3.2.2 Run Time Information 36

3.3 calculate method 36

4 {ǘǳŘȅ tƭƻǘ 9ȄŀƳǇƭŜΥ Ψ{ƛƳǇƭŜ a!/5Ω 38

4.1 StudyHeader Annotation (@StudyHeader) 41

4.2 initialize method 41

4.3 calculate Method 43

5 Drawing Figures 45

5.1 Figure Class 45

5.2 Box 46

5.3 ColorRange Class 46

5.4 Line Class 47

5.5 Polygon 47

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 4 of 85

5.6 ResizePoint 47

5.6.1 Resize Types 48

5.6.2 Absolute Positioning 49

5.7 SinglePointFigure 49

5.7.1 Marker Class 50

5.7.2 Label Class 50

6 Signals 51

7 Tick Data 54

8 Strategies 56

8.1 StudyHeader 56

8.2 Study Class 57

8.3 OrderContext Interface 58

8.4 Order Interface 60

8.5 Trading Sessions 62

8.5.1 Runtime Support 63

8.6 Sample MA Cross Strategy 64

8.7 Strategy States 66

8.8 Manual Strategies 67

8.8.1 Entry States 68

9 Logging 70

10 Internationalization 72

10.1 Example: MACD 72

11 Deployment 75

11.1 Packaging 75

11.2 Loading Extensions 75

11.3 Third-Party Libraries (jars) 76

12 Environment Setup 77

12.1 Where do I get the SDK? 77

12.2 Installing Java 77

12.3 Installing Eclipse 77

12.4 Creating a Project 77

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 5 of 85

1 Introduction

Welcome to the aƻǘƛǾŜ²ŀǾŜϰ {ƻŦǘǿŀǊŜ 5ŜǾŜƭƻǇƳŜƴǘ Yƛǘ ό{5YύΗ LŦ ȅƻǳ ŀǊŜ ǊŜŀŘƛƴƎ ǘƘƛǎ ŘƻŎǳƳŜƴǘ ǘƘŜƴ
you are interested in developing a custom study and/or strategy for use ǿƛǘƘƛƴ aƻǘƛǾŜ²ŀǾŜϰΦ

YƴƻǿƭŜŘƎŜ ƻŦ ǘƘŜ WŀǾŀϰ ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜ ƛǎ ƴŜŎŜǎǎŀǊȅ ŦƻǊ ȅƻǳ ǘƻ ƛƳǇƭŜƳŜƴǘ ȅƻur
studies/strategies. If you are unfamiliar with this language, it is recommended that you consult a book
or take a basic course on Java programming.

All of the studies and strategies that are built into MotiveWaveϰ were programmed using the SDK. The
source code for these are freely available and may be used as examples or starting points.

Before you begin, it is important to understand studies and strategies and the difference between them.

1.1 What is a Study?

A study uses historical price and/or volume data to display new information to the user to assist them in
making buying or selling decisions. There are two types of studies:

1. Overlays
2. Study Plots

It is also possible to create studies that contain multiple plots and overlays.

1.1.1 Overlays

Overlays display information that is drawn on top of an existing plot (most typically the price plot). What
is actually displayed depends on the study itself. Some examples of what a study may display include:

¶ Paths ς A path is a series of lines that connects data points. Examples of this include a moving
average or price bands.

¶ Markers ς Markers may be used to indicate points of interest (such as buy, sell or stop loss
locations). Markers come in many forms: arrows, circles, triangles, letters, numbers etc

¶ Shades ς Area of a plot may be shaded to indicate zones of interest

¶ Lines ς May include trend lines, support or resistance areas

¶ Paint Bars ς Price or volume bars may be displayed using specific colors

¶ Text ς Descriptive text may be used to explain elements of the study

¶ Figures ς any type of figure or drawing may be drawn on a plot as part of the overlay.

¶ Indicators ς Indicators may be added to the vertical axis to show the current value of a study.

The following screen shot illustrates an example of some of the elements that may be part of an overlay:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 6 of 85

Figure 1 - Overlay Example

1.1.2 Study Plots

Study plots display information drawn in a plot that is separate from the price plot. The typical reason
why this is displayed in a separate plot is because the values generated are independent (or outside) of
the price range.

Overlays may be added to a study plot to display additional information (such as a moving average).

The following screen shot shows some examples of study plots:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 7 of 85

Figure 2 - Study Plot Example

1.2 What is a Strategy?

A strategy is a special type of study that may be used to automate or partially automate trading. In
addition to displaying the study information, a Control Box is made available that allows the user to
activate/deactivate a strategy and view important runtime information. The following screen shot
shows an example of the Moving Average Cross Strategy:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 8 of 85

Figure 3 Strategy Example

aƻǘƛǾŜ²ŀǾŜϰ ǎǳǇǇƻǊǘǎ ǘǿƻ ƳƻŘŜǎ ŦƻǊ ǎǘǊŀǘŜƎƛŜǎ:

1. Automatic ς Once the user activates the strategy, it will automatically buy and sell based on the
internal logic.

2. Manual ς In this mode, the user tells the strategy when it is OK to enter.

1.3 Distribution

Studies (and strategies) may be distributed to users by packaging them together in Jar (Javaϰ Archive)
files. If you feel the need to protect the contents of these packages you may use obfuscators (such as
ProGuard) to prevent reverse engineering of the binary code.

1.3.1 Access Control

You can control the access to a set of ǎǘǳŘƛŜǎκǎǘǊŀǘŜƎƛŜǎ ōȅ ǳǎƛƴƎ ǘƘŜ ΨǎŜŎǳǊŜŘΩ ŀǘǘǊƛōǳǘŜ ƛƴ ǘƘŜ {ǘǳŘȅ
IŜŀŘŜǊΦ {ŜǘǘƛƴƎ ǘƘƛǎ ŀǘǘǊƛōǳǘŜ ǘƻ ΨǘǊǳŜΩ ǿƛƭƭ ŜƴǎǳǊŜ ǘƘŀǘ ƻƴƭȅ ǳǎŜǊǎ ǘƘŀǘ you have given access will be
allowed to load and execute studies and strategies in the given namespace.

!ŎŎŜǎǎ ŎƻƴǘǊƻƭ ǊŜǉǳƛǊŜǎ ŀƴ ŀŎŎƻǳƴǘ ǘƻ ōŜ ǎŜǘǳǇ ǿƛǘƘ aƻǘƛǾŜ²ŀǾŜϰΦ LŦ ȅƻǳ ǿƻǳƭŘ ƭƛƪŜ ǘƻ ǳǘƛƭƛȊŜ ǘƘƛǎ
feature, send an email requesting that an account be created to: support@motivewave.com.

mailto:support@motivewave.com

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 9 of 85

2 Fundamental Classes

This section describes the fundamental classes that you will need to interact with when building your
custom study/strategy. For a complete view of all of the classes/interfaces in the SDK, please consult
the API documentation.

2.1 Packages

The SDK consists of the following 6 packages:

1. com.motivewave.platform.sdk.common ς Contains common classes and interfaces. These
ƛƴŎƭǳŘŜ ΨƛƴŦƻΩ ŎƭŀǎǎŜǎΣ ŜƴǳƳŜǊŀǘƛƻƴǎΣ ǳǘƛƭƛǘȅ ŦǳƴŎǘƛƻƴǎ ŀƴŘ ΨŎƻƴǘŜȄǘΩ ŎƭŀǎǎŜǎ ǘƘŀǘ ŜȄǇƻǎŜ
functionally and data from MotiveWaveϰ

2. com.motivewave.platform.sdk.common.desc ς /ƻƴǘŀƛƴǎ Ψ5ŜǎŎǊƛǇǘƻǊΩ ŎƭŀǎǎŜǎΦ ¢ƘŜǎŜ ŀǊŜ ǳǎŜŘ ǘƻ
describe settings and values to the MotiveWaveϰ runtime environment.

3. com.motivewave.platform.sdk.common.menu ς Contains classes for implementing custom
context menus.

4. com.motivewave.platform.sdk.draw ς The classes in this package are used to draw figures on
the price and study plots.

5. com.motivewave.platform.sdk.study ς Contains the base classes for creating and interacting
with studies and strategies.

6. com.motivewave.platform.sdk.order_mgmt ς Contains classes/interfaces for managing orders.
These are used in conjunction with strategies.

2.2 Study Class

The Study class is the base class for all studies and strategies. When implementing any study/strategy
you will first start by deriving directly or indirectly from this class.

Why is there no Strategy Class?

Strategies are a specialized version of a study, in fact most strategies are based (at least in part) on an
existing study. If there was a separate Strategy class it would be difficult (if not impossible) to implement a
strategy by deriving from an existing study. It is for this reason that the methods and properties that are
specific to strategies are included in the Study class.

For most studies there are two methods that you will override:

1. initialize ς The purpose of this method is to describe the user configurable settings for the study
and describe the runtime behavior.

2. calculate ς This method calculates the values for the study at the given historical bar.

The following diagram illustrates the basic elements that you need to be concerned with in the Study
class. For a complete list of methods and properties, see the API documentation.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 10 of 85

Figure 4 - Basic Study Methods

There are 3 main properties in the Study class that are important for implementing a study:

1. Runtime Descriptor ς this describes the runtime behavior of the study
2. Settings Descriptor ς This describes the user settings
3. getSettings() ς This is typically used in the calculate method to get access to the settings that the

user has chosen.

Figure 5 - Study Properties

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 11 of 85

2.3 StudyHeader

The StudyHeader is an annotation that is required on every class derived from the Study class. The
purpose of this annotation is to describe static information about the study/strategy.

The StudyHeader is read when the Study class is first loaded and is used to register the study with
MotiveWaveϰ and make it available in the {ǘǳŘȅ ƳŜƴǳ ŀƴŘ ǘƘŜ Ψ!ŘŘ {ǘǳŘȅΩ ŘƛŀƭƻƎΦ

The following screen shot shows some of the important properties of the StudyHeader. For a full
description of all properties see the API documentation.

Figure 6 - StudyHeader properties

2.4 Describing User Settings

The MotiveWaveϰ SDK provides a lot of flexibility when describing user settings for a study. Settings
may be organized into tabs and groups which are displayed in the study dialog. MotiveWaveϰ also
provides many different setting descriptors to represent different types of settings.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 12 of 85

The following screen shot illustrates the study dialog for a CCI study:

Figure 7 - Study Dialog

The classes for describing user settings can be found in the package:
com.motivewave.platform.sdk.common.desc. The following UML (Universal Markup Language)
diagram illustrates the high level classes involved and how they relate to each other. For a full list of the
available SettingDescriptor classes, see the API documentation.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 13 of 85

Figure 8 - Descriptor Classes

+addTab()

+getTabs()

+addDependency()

+getDependencies()

+getSettings()

+getSetting()

+getDefaultValue()

SettingsDescriptor

+addGroup()

+getGroups()

-name

SettingTab

1 *
+addRow()

+getRows()

-name

SettingGroup

1 *

+createInput()

-name

-label

-showLabel

-defaultValue

-enabled

-supportsDisable

SettingDescriptor

ColorDescriptor PathDescriptorBarDescriptor IntegerDescriptorInputDescriptor ...

1

*

Base Class for all

setting descriptors

Contains all of the

setting descriptors.

For a full list, see API

documentation.

2.4.1 SettingsDescriptor class

The SettingsDescriptor class contains all of the user configurable settings. An instance of this class
should be created iƴ ǘƘŜ ΨinitializeΩ method (of the Study class) and assigned to the study using the
ΨsetSettingsDescriptorΩ ƳŜǘƘƻŘΦ

There are two methods in this class that are important:

1. addTab ς Adds a SettingTab object that contains settings on a tab in the Study Dialog
2. addDependency ς Used to identify dependencies between settings. For example, an
Ψ9ƴŀōƭŜŘ5ŜǇŜƴŘŜƴŎȅΩ ǿƛƭƭ ŜƴŀōƭŜ ŀ ǎŜǘǘƛƴƎ ƛŦ ŀ BooleanSetting is true or false.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 14 of 85

Figure 9 - SettingsDescriptor

2.4.2 SettingTab Class

The SettingTab class represents a tab in the study dialog. This simple class consists of a name (to display
in the tab) and a set of SettingGroup instances.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 15 of 85

Figure 10 - SettingTab class

2.4.3 SettingGroup Class

The SettingGroup class organizes related settings into a named group. The group consists of a set of
rows that each contains 1 or more setting descriptors.

Figure 11 - SettingGroup class

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 16 of 85

2.5 Settings class

The Settings class contains all of the information about the settings configured by the user of the study.
You can access this class by using the getSettings() method in the Study base class.

Many of the setting descriptƻǊ ŎƭŀǎǎŜǎ ƘŀǾŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ΨLƴŦƻΩ ŎƭŀǎǎŜǎ (see
com.motivewave.platform.sdk.common package) that contain the user specific settings. These may be
ŀŎŎŜǎǎŜŘ ǳǎƛƴƎ ŀ ǎŜǊƛŜǎ ƻŦ ΨƎŜǘΩ ƳŜǘƘƻŘǎ ƻƴ ǘƘŜ Settings class. The following screen shot illustrates some
of these methods. For a complete description of the Settings class and the Info classes see the API
documentation.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 17 of 85

Figure 12 - Settings class

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 18 of 85

2.6 Runtime Settings

The RuntimeDescriptor (com.motivewave.platform.sdk.study package) is used to describe runtime
behavior for the study. This includes the following:

1. Label Settings ς used to describe how the label is generated
2. Export Values ς These are values generated by the study that may be used outside of the study.
3. Declare Elements ς These methods associate values generated by the study to visual constructs
ƻƴ ǘƘŜ ΨŘŜŦŀǳƭǘΩ Ǉƭƻǘ όǎŜŜ Composite Studies below for more information):

a. Paths ς A series of values connected by lines
b. Bars ς Vertical bars displayed on a plot
c. Signals ς Signals generated by the study
d. Indicators ς Indicators displayed on the vertical axis

4. Study Plot Settings (default plot)
a. Top/Bottom Insets ς Used to add space to the top or bottom of the plot
b. Vertical Range ς Range of the vertical axis
c. Min Tick ς precision of the vertical axis values
d. Horizontal Lines ς Horizontal lines displayed on the study plot

Why do I need to declare elements such as a Path?

¸ƻǳ Ƴŀȅ ŀǎƪ ȅƻǳǊǎŜƭŦΣ ΨǿƘȅ ŘƻŜǎƴΩǘ ǘƘŜ PathDescriptor (or other descriptor classes) class include the value
ƪŜȅΚΩΦ ²ƘƛƭŜ this may make sense in most situations, it does not allow you to use the same path
information for multiple paths. Consider for example a case where you have a price bands study and you
want to have the same settings for the top and bottom bands. By declaring the path for the top and
bottom values as the same path info, you are able to re-use this descriptor object.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 19 of 85

Figure 13 - RuntimeDescriptor class

2.6.1 Composite Studies

The majority of studies consist of either a single overlay or a single plot. Version 1.1 of the SDK allows
you to create studies that consist of multiple study plots and (optionally) overlays on the price plot.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 20 of 85

The RuntimeDescriptor class enables you to define additional plots for a study. This class has been
enhanced in version 1.1 to allow the definition of additional plots using the new Plot class (see
com.motivewave.platform.sdk.study package).

The majority of methods on the RuntimeDescriptor Ŏƭŀǎǎ ƻǇŜǊŀǘŜ ƻƴ ǘƘŜ ΨŘŜŦŀǳƭǘΩ Ǉƭƻǘ ŦƻǊ ǘƘŜ ǎǘǳŘȅΦ Lƴ
the case of an overlay, the default plot will be the plot where the overlay was added. For example,
when you add a simple moving average (SMA) to the price plot, the default plot for the overlay will be
the price plot.

Additional plots may be defined using the Plot class. Each plot has independent settings for labels, tabs,
range keys etc and elements are declared separately for each plot (ie paths, bars etc). The following
diagram illustrates the relationship between the RuntimeDescriptor and the Plot classes.

Figure 14 Runtime Descriptor and Plot classes

+addPlot()

+getPlot()

+getDefaultPlot()

+getPricePlot()

+exportValue()

+declareSignal()

+declarePath()

+declareBars()

+declareGuide()

+declareIndicator()

+setLabelSettings()

+setRangeKeys()

+addHorizontalLine()

+...()

RuntimeDescriptor

+declarePath()

+declareBars()

+declareGuide()

+declareIndicator()

+addHorizontalLine()

-name

-labelPrefix

-labelSettings

-tabName

-showLabel

-rangeKeys

-topInsetPixels

-bottomInsetPixels

-minTick

-enabled

-...

Plot

1 *
These

delegate

to the

ódefaultô

plot

Two reserved plots are defined:

Plot.PRICE ï represents the price plot.

Use this to add overlays on the price plot.

Plot.DEFAULT ï represents the primary

study plot.

2.7 DataContext Interface

The DataContext interface provides access to historical data as well as utility methods for interacting
with the study framework.

The following diagram illustrates some of the useful methods:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 21 of 85

Figure 15 - Data Context Interface

2.8 DataSeries Interface

The primary objective of the DataSeries interface is to provide a repository for historical price data and
data generated by the study. Data stored in this interface is accessed by a numerical index which
represents the price bar where the data applies.

The following diagram illustrates the structure of the data in the data series. Essentially the data is an
arraȅ ƻŦ ǘŀōƭŜǎ ǿƘŜǊŜ ǘƘŜ ƛƴŘŜȄ ΨлΩ ƛǎ ǘƘŜ ŦƛǊǎǘ όƻƭŘŜǎǘύ ōŀǊ ŀƴŘ ƛƴŘŜȄ ΨǎƛȊŜόύ-мΩ ƛǎ ǘƘŜ ƭŀǘŜǎǘ ōŀǊΦ

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 22 of 85

Figure 16 - Data Structure

Historical

Data

Derived

Data

Computed

by Study

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

[0] [index] [size()-1]

... ...

latest bar

The DataSeries interface also contains a number of convenience methods for calculating common values
such as moving averages, swing points and lowest or highest values.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 23 of 85

Figure 17 - DataSeries Interface

2.9 Multiple Instruments

Version 1.1 of the SDK offers support for multiple instruments. This allows you to retrieve real time and
historical data for one or more instruments (beyond the primary instrument) for studies and strategies.
For strategies you may also place orders for multiple instruments (see section on strategies).

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 24 of 85

Please Note: Not all editions ƻŦ aƻǘƛǾŜ²ŀǾŜϰ ƛƴŎƭǳŘŜ ǎǳǇǇƻǊǘ ŦƻǊ ƳǳƭǘƛǇƭŜ ƛƴǎǘǊǳƳŜƴǘǎΦ Lƴ ǘƘŜǎŜ ŎŀǎŜǎΣ
studies requiring multiple instruments will not be accessible to the end user.

2.9.1 Design Time

Usage of multiple instruments requires the declaration of this feature in the StudyHeader and usage of
the InstrumentDescriptor to declare the instruments that will be used at run time.

There are essentially two items that are necessary to enable multiple instruments as part of the design
time:

1. Declare support for multiple instruments ς In the StudyHeader set the attribute
multipleInstrument=true

2. Declare one or more instruments in the initialize() method ς Use the InstrumentDescriptor to
declare one or more instruments. For details on how to use this class, see the API
documentation.

The following ŎƻŘŜ ǎƴƛǇǇŜǘ ƛƭƭǳǎǘǊŀǘŜǎ ǘƘŜ ǳǎŀƎŜ ƻŦ ǘƘŜ ΨmultipleInstrumentΩ ŀǘǘǊƛōǳǘŜ ƛƴ ǘƘŜ ōǳƛƭǘ-in
Spread study:

Figure 18 Multiple Instrument StudyHeader

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 25 of 85

Figure 19 InstrumentDescriptor

The following screen shot demonstrates how the InstrumentDescriptor enables the user to choose the
instrument when they create the study

Figure 20 Instrument Input

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 26 of 85

2.9.2 Run Time

Several enhancements have been added to the SDK to enable access settings and historical/real time
information in the run time portion of the study:

1. Settings ς a new method getInstrument(key) on the Settings class allows you to retrieve the
instrument that the user chose when they created (or modified) the study.

2. DataSeries ς several new methods have been added to the DataSeries interface for retrieving
information. Essentially, these are overloaded methods of ƎŜǘ5ƻǳōƭŜόΧύΣ ƎŜǘIƛƎƘόΧύΣ ƎŜǘ[ƻǿόΧύ
ƎŜǘ/ƭƻǎŜόΧύ ŜǘŎΦ

The following code snippet from the Spread study shows how to retrieve chosen instruments and
historical data from the DataSeries interface:

Figure 21 Spread calculate method

2.10 Custom Context Menu

Support for custom context menus was added in version 5.3 of MotiveWave. This feature enables a user
to interact with a study without having to open the study dialog. The following screen shot shows an
example of a custom context menu in the Trend Line study example. In this example two additional
items have been added to the context menu:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 27 of 85

1. Extend Left ς Extends the trend line to the left of the screen
2. Extend Right ς Extends the trend line to the right of the screen

The following excerpt from the TrendLine example study class demonstrates how to add custom menu
ƛǘŜƳǎΦ ¸ƻǳ Ŏŀƴ ǳǎŜ ǘƘŜ άǇƭƻǘbŀƳŜέ (for composite studies) ŀƴŘ άƭƻŎέ ǇŀǊŀƳŜǘŜǊǎ to customize the items
depending on where the context menu is requested (where the user does the right click).

²ƘŜƴŜǾŜǊ ŀ ƳŜƴǳ ƛǘŜƳ ƛǎ ƛƴǾƻƪŜŘ ǘƘŜ ǎǘǳŘȅ ƛǎ ǊŜŎŀƭŎǳƭŀǘŜŘΦ ¢ȅǇƛŎŀƭƭȅ ǘƘŜ ΨŀŎǘƛƻƴΩ ǇŀǊǘ ƻŦ ǘƘŜ ƳŜƴǳ ƛǘŜƳ
is to modify a setting in the study. When the study is recalculated, it will pick up the change to the study
settings.

Figure 22 TrendLine Example Study

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 28 of 85

The following diagram illustrates the classes used to define custom context menus for a study.
{ǳōƳŜƴǳǎ Ŏŀƴ ōŜ ŎǊŜŀǘŜŘ ōȅ ǳǎƛƴƎ ǘƘŜ aŜƴǳ Ŏƭŀǎǎ όǿƘƛŎƘ Ŏƻƴǘŀƛƴǎ ŀ ƭƛǎǘ ƻŦ aŜƴǳLǘŜƳΣ ƛŜ ΨƛǘŜƳǎΩύ. The
MenuSeparator class may be used to add dividers to the menu. Finally the MenuDescriptor class is used
ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ŎƻƴǘŜȄǘ ƳŜƴǳΦ ¦ǎŜ ǘƘŜ ΨƛƴŎƭǳŘŜ5ŜŦŀǳƭǘLǘŜƳǎΩ ǘƻ ǎƘƻǿ ƻǊ ƘƛŘŜ ǘƘŜ ŘŜŦŀǳƭǘ ƳŜƴǳ ƛǘŜƳǎ
that are displayed as part of the context menu.

Figure 23 Package: com.motivewave.platform.sdk.common.menu

2.11 Miscellaneous Classes

The following diagram illustrates some additional classes that may be of interest. These classes are
available in the common package (com.motivewave.platform.sdk.common). For full details on these
and other classes, please consult the API documentation.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 29 of 85

Figure 24 - Miscellaneous Classes

+calcLatestMA()

+compare()

+toDouble()

+toInt()

+in()

+max()

+min()

+clipLine()

+distance()

+intersection()

+midpoint()

+rotate()

+slope()

+...()

Util

+getFont()

+getTextColor()

+getBackgroundColor()

+getLineColor()

+getBarColor()

+getTopFillColor()

+getBottomFillColor()

+...()

Defaults

+getSymbol()

+getTickSize()

+getPointSize()

+calcPnL()

+getLastPrice()

+getBidPrice()

+getAskPrice()

+round()

+format()

+...()

Instrument

-BarData

-BarInput

-MAMethod

-MarkerType

-ShadeType

-Size

-Position

-Priority

-ValueType

-TextAlign

-TextOutline

-...

Enums

-INDIAN_RED

-CORAL

-GOLD

-KHAKI

-LIME

-...

X11Colors

+getMinutes()

+getInterval()

+isIntraday()

+isRange()

+isRenko()

+isVolume()

+isTick()

BarSize

Encapsulates

enumeration classes

into a single interface

(for convenience).

Contains utility

methods for use

when developing

studies. (consult API

documentation)

Represents an

instrument. Contains

methods for getting

latest data,

calculating PnL,

formatting etc.

Bar size. Includes

linear data (minutes)

and non-linear such

as Range, Renko,

Constant Volume,

Tick etc

System Defaults.

Mostly contains fonts

and colors as

configured by the

user. Most of these

come from the

current chart theme.

óX11ô colors. Useful

for setting default

colors on lines,

shades etc.

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 30 of 85

3 Overlay Example: óMy Moving Averageô

Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴ ǿŜ ǿƛƭƭ ŎǊŜŀǘŜ ŀ ǾŜǊȅ ǎƛƳǇƭŜ ŜȄŀƳǇƭŜ ŎŀƭƭŜŘ Ψaȅ aƻǾƛƴƎ !ǾŜǊŀƎŜΩ ǘƘŀǘ ŘƛǎǇƭŀȅǎ ŀƴ
exponential moving average as a path on a plot.

[ŜǘΩǎ ǎǘŀǊǘ ōȅ ƭƻƻƪƛƴƎ ŀǘ ǘƘŜ Ŏode for this example:

package study_examples;

import com.motivewave.platform.sdk.common.*;

import com.motivewave.platform.sdk.common.desc.*;

import com.motivewave.platform.sdk.study.*;

/** This simple example displays a n exponential moving average. */

@StudyHeader (

 namespace= "com.mycompany" ,

 id= "MY_MA",

 name="My Moving Average" ,

 label= "My MA" ,

 desc= "This simple example displays an exponential moving average" ,

 menu="My Studies" ,

 overlay= true ,

 studyOverlay= true)

public class MyMovingAverage extend s Study

{

 enum Values { MA };

 /** This method initializes the study by doing the following:

 1. Define Settings (Design Time Information)

 2. Define Runtime Information (Label, Path and Exported Value) */

 @Override

 public void initiali ze(Defaults defaults)

 {

 // Describe the settings that may be configured by the user.

 // Settings may be organized using a combination of tabs and groups.

 SettingsDescriptor sd = new SettingsDescriptor();

 setSettingsDescriptor(sd);

 SettingTab tab = new SettingTab("General");

 sd.addTab(tab);

 SettingGroup inputs = new SettingGroup("Inputs");

 // Declare the inputs that are u sed to calculate the moving average.

 // Note: the 'Inputs' class defines several common input key s.

 // You can use any alpha - numeric string that you like.

 inputs.addRow(new InputDescriptor(Inputs. INPUT, "Input" , Enums.BarInput. CLOSE));

 inpu ts.addRow(new IntegerDescriptor(Inputs. PERIOD, "Period" , 20, 1, 9999, 1));

 tab.addGroup(inputs);

 SettingGroup colors = new SettingGroup("Display");

 // Allow the user to change the settings for the path that will

 // draw the moving aver age on the plot . In this case, we are going

 // to use the input key Inputs.PATH

 colors.addRo w(new PathDescriptor(Inputs. PATH, "Path" , null , 1.0f, null , true , true , false));

 tab.addGroup(colors);

 // Describe the runtime settings using a 'StudyDescriptor'

 RuntimeDescriptor desc = new RuntimeDescriptor();

 setRuntimeDescriptor(de sc);

 // Describe how to create the label. The label uses the

 // 'label' attribute in the StudyHeader (see above) and adds the input values

 / / defined below to generate a label.

 desc.setLabelSettings(Inputs. INPUT, Inputs. PERIOD);

 // E xported values can be used to display cursor data

 // as well as provide input parameters for other studies,

 // generate alerts or scan for study p atterns (see study scanner).

 desc.exportValue(new ValueDescriptor(Values. MA, "My MA" , new String[] {Inputs. INPUT, Inputs. PERIOD}));

 // MotiveWave will automatically draw a path using the path settings

 // (described above with the key 'Inputs.LI NE') In this case

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 31 of 85

 // it will use the values generated in the 'calculate' method

 // and stor ed in the data series using the key 'Values.MA'

 desc.declarePath(Values. MA, Inputs. PATH);

 }

 /** This method calculates the moving average for the given index in the data series. */

 @Override

 protected void calculate(int index, DataContext ctx)

 {

 // Get the settings as defined by the user in the study dialog

 // getSettings() returns a Settings object that contains all

 // of the sett ings that were configured by the user.

 Object input = getSettings().getInput(Inputs. INPUT);

 i nt period = getSettings().getInteger(Inputs. PERIOD);

 // In order to calculate the exponential moving average

 // we need at least 'period' poin ts of data

 if (index < period) return ;

 // Get access to the data series.

 // This interface provides access to the historical data as well

 // as utility methods to make this calculation easier.

 DataSeries series = ctx.getDataSer ies();

 // This utility method allows us to calculate the Exponential

 // Moving Average instead of doing this ourselves.

 // The DataSeries interface contains several of these types of methods.

 Double average = series.ema(index, period, input);

 // Calculated values are stored in the data series using

 // a key (Values.MA). The key can be any unique value, but

 // we recommend using an enumeration to organize these within

 // your class. Notice that in the initialize m ethod we declared

 // a path using this key.

 series.setDouble(index, Values. MA, average);

 }

}

!ƭƭ ǎǘǳŘƛŜǎ Ƴǳǎǘ ŘŜǊƛǾŜ ŦǊƻƳ ǘƘŜ ōŀǎŜ Ŏƭŀǎǎ Ψ{ǘǳŘȅΩ όŎƻƳΦƳƻǘƛǾŜǿŀǾŜΦǇƭŀǘŦƻǊƳΦǎŘƪΦǎǘǳŘȅΦ{ǘǳŘȅύΦ ¢Ƙƛǎ
class contains a number of methods that we can override (we will look at these in detail later). For the
purposes of this example, we will explore the following:

¶ StudyHeader

¶ initialize method

¶ calculate method

3.1 StudyHeader Annotation (@StudyHeader)

All studies must define a study header. This is an annotation that is placed before declaring the class:

MotiveWaveÊ
SDK Programming Guide

Version 1.3 ©2019 MotiveWaveÊ Software Page 32 of 85

Figure 25 - My MA Study Header

There are a number of important items in this header:

¶ namespace ς this is used to qualify related studies and avoid naming conflicts with studies
develƻǇŜŘ ōȅ ǘƘƛǊŘ ǇŀǊǘƛŜǎΦ Lǘ ƛǎ ǊŜŎƻƳƳŜƴŘŜŘ ǘƘŀǘ ȅƻǳ ǳǎŜ ŀ ŦƻǊƳ ǎƛƳƛƭŀǊ ǘƻ ΨŎƻƳΦғƴŀƳŜ ƻŦ
your organizatƛƻƴҔΩ ¢ƻƎŜǘƘŜǊ ǿƛǘƘ ǘƘŜ ƛŘ ǘŀƎΣ ǘƘŜǎŜ ŦƻǊƳ ŀ Ǝƭƻōŀƭƭȅ ǳƴƛǉǳŜ ƛŘŜƴǘƛŦƛŜǊ ŦƻǊ ȅƻǳǊ
study

¶ id ς this identifies your study and must be unique within your namespace

¶ name ς This is the name of your study and is displayed in the study dialog as well as the study
menu

¶ label ς This is used as part of the study legend (displayed in the top left corner of the plot
underneath the plot title). If not specified, the name attribute will be used.

¶ desc ς This is the description of your study and is displayed in the study dialog

¶ menu ς Identifies the menu (underneath the Study menu) where this study can be found

¶ overlay ς If true indicates that this study will be an overlay displayed on another plot

¶ studyOverlay ς Indicates that this study can be used as an overlay on a study plot.

3.2 initialize method

TƘŜ ΨƛƴƛǘƛŀƭƛȊŜΩ ƳŜǘƘƻŘ ƛǎ ǳǎŜŘ ǘƻ ǇŜǊŦƻǊƳ ŀƴȅ ƴŜŎŜǎǎŀǊȅ ƛƴƛǘƛŀƭƛȊŀǘƛƻƴ ǿƻǊƪ ǿƘŜƴ ǘƘŜ ǎǘǳŘȅ ƛǎ ŎǊŜŀǘŜŘΦ
This method is given ŀŎŎŜǎǎ ǘƻ ǎȅǎǘŜƳ ŘŜŦŀǳƭǘǎ όǎǳŎƘ ŀǎ ŎƻƭƻǊǎ ƻǊ Ŧƻƴǘǎύ ŀǾŀƛƭŀōƭŜ ǘƘǊƻǳƎƘ ǘƘŜ Ψ5ŜŦŀǳƭǘǎΩ
class (see API documentation for specific details). The most common usage of this method is to do the
following:

1. Describe Design Information (ie: inputs) ς The SettingsDescriptor describes settings for the study
and how to display this to the user (in the Study Dialog).

